
www.sensoria-ist.eu

The SENSORIA Development Environment

Creating a Sensoria SDE Tool

Philip Mayer

Programming and Software Engineering Research Group

Department of Informatics

LMU Munich

Germany

www.sensoria-ist.eu

Creating a Sensoria SDE Tool

 An SDE-integrated tool can take many forms

 The only requirement is some XML code to register a Java-Based API

(might be a wrapper) to the SDE

 Mostly, however, SDE-Integrated Tools are fully-fledged Eclipse Plug-Ins

as well

 They provide their own UI to the Eclipse platform

 Additionally, they offer API for scripting through the SDE

 We will follow this approach in creating our own tool for the SDE

 We‟ll use the Eclipse PDE (Plug-In Development Environment) to create an

Eclipse Plug-In

 Later, we‟ll use the SDE Dev tools to add support for the SDE

SENSUS 2009 - Philip Mayer 2

www.sensoria-ist.eu

The Tool

 We‟ll create a tool which enables us to check for “problems” (non-well-

nestedness, cycles...) in UML4SOA model files

 We want to perform this check

 At any time, i.e. using the UI for an arbitrary model

 In an SDE workflow, for example before converting to BPEL.

 Input of the tool: UML4SOA UML model of an orchestration

 Output of the tool: Report on problems, if there are any, in the UI.

SENSUS 2009 - Philip Mayer 3

www.sensoria-ist.eu

What we need...

 Eclipse (as our underlying platform). This includes

 Eclipse PDE (Plug-In Development Environment) for writing Plug-Ins

 SWT/JFace: The Standard Widget Toolkit is the Widget Toolkit used by

Eclipse (instead of Swing). JFace is an extension of this toolkit.

 An UML input model. We‟ll use the output provided by MagicDraw, which

is an XML-based format. In Eclipse, we can use the following

tools/techniques to read the input and query it:

 EMF (Eclipse Modelling Framework)

 UML2Tools (UML2 Meta Model implemented in EMF)

 The SDE. We use the SDE Dev tools to create an integration of our tool

into the SDE.

SENSUS 2009 - Philip Mayer 4

www.sensoria-ist.eu

Creating an Eclipse Plugin

 We start by creating a new Eclipse project inside the workspace. To do

this, we follow these steps:

 Add a new Plug-In project

 Select “Generate an Activator”

 Select “This Plug-In will make contributions to the UI”

 Do not select any template

 Exploring the Plug-In

 MANIFEST.MF/plugin.xml contains meta-settings

 Activator class contains setup routines

 Testing the Plug-In

 Launch an Eclipse Runtime Workbench

 (Nothing to see – no contributions to the UI yet)

 Now, we have an empty Plug-In we can use for our purposes.

 How can we use it?

SENSUS 2009 - Philip Mayer 5

www.sensoria-ist.eu

Contributing to Eclipse

 The Eclipse platform has a very open architecture – it enables plug-ins to

"extend" it at many places by contributing to an extension point.

 Extension points exist for many purposes, for example for

 …adding a new menu, or a menu entry (an action)

 …adding a new editor

 …adding a new view

 …adding status line items, cool bar items, perspectives, etc.

 …adding non-UI items like source code control etc.

 …

 Plug-Ins contribute to an extension point by declaring an extension in
their plugin.xml file.

 Each plug-in can also provide its own extension points and can therefore

be extended itself, making the system very flexible.

SENSUS 2009 - Philip Mayer 6

www.sensoria-ist.eu

Adding an entry point

 In our case, the user must be able to execute the problem analysis based

on a UML model.

 UML models reside in a file with a .uml extension.

 To add an action to files, we need to extend the popup menu on files

 In MANIFEST.MF/plugin.xml, select the Extensions tab

 Add a new org.eclipse.ui.popupMenus extension with template

Popup Menu to create an object contribution

 Enter some settings (stay with IFile as contribution object)

 Use Runtime Workbench to test

 Restricting the contribution to .uml files:

 Add “*.uml” as name filter on the object contribution.

SENSUS 2009 - Philip Mayer 7

www.sensoria-ist.eu

EMF

 UML models in .uml files are stored in an XML dialect which we can

process using the Eclipse Modelling Framework (EMF).

 EMF allows creation of meta-models of arbitrary domains; for example,

the UML2 language.

 Concrete instances of these meta-models, i.e. models, can then be

created, queried, and manipulated either dynamically, or through

generated Java classes.

 The Eclipse project provides a complete meta-model of the UML2 based

on EMF.

 This means we can load, store, create, and manipulate UML2 models

using the EMF mechanisms.

 In our case, we can load and query a UML2 model in a .uml file through

EMF.

 SENSUS 2009 - Philip Mayer 8

www.sensoria-ist.eu

Loading EMF models

 In our action, we get the selected UML file through the selection:
 (IFile) ((IStructuredSelection)selection).getFirstElement();

 A .uml file contains a serialized UML model in XMI format. The specific

XMI format is the one defined by EMF.

 Therefore, we can use EMF deserialization classes to load the model

back into memory.

 We need the EMF classes to do this, so add the EMF plugins as

dependencies

 org.eclipse.emf

 org.eclipse.emf.ecore.xmi

 EMF serialization puts objects into resources (basically, files).

 A resource loads data from a file, the resource can then be queried for the

actual model.

SENSUS 2009 - Philip Mayer 9

www.sensoria-ist.eu

Resource Contents

 Load the EMF resource

 ResourceSet set= new ResourceSetImpl();

 Resource resource= set.getResource(URI.createFileURI(

 theUMLFile.getLocation().toString()), true);

 Get actual model elements:

 EList<EObject> contents= resource.getContents();

 or

 TreeIterator<EObject> allContents=

 resource.getAllContents();

 The contents of an EMF resource are EObjects which are related to one

another (by associations, compositions, ...).

 They belong to an EMF metamodel, which is defined somewhere and

registered with the EMF core

 In our case, we need the UML2 meta model to deal with these EObjects.

SENSUS 2009 - Philip Mayer 10

www.sensoria-ist.eu

UML2 Meta Model

 To use the UML2 EMF metamodel, add a dependency:

 org.eclipse.uml2.uml

 You can also import the model with Import > Plug-Ins and Fragments.

 The metamodel defines EObjects like Activity, Class, Pin, ...

 To use these, cast the EObjects to the actual classes, e.g.

 If (someObject instanceof Activity)

 doSomethingWith((Activity)someObject);

 We are interested in UML Activities (the UML4SOA base construct for

modelling orchestrations). Collect these, then

 Perform Problem Analysis

 This is done by querying the in-memory EMF model.

 Note. There are other metamodels written in EMF for many purposes and

languages – check Google before creating your own.

SENSUS 2009 - Philip Mayer 11

www.sensoria-ist.eu

Querying EMF models #1

 EMF model objects are all based on the EObject root class

 They contain dynamic query/manipulation methods and (if a concrete

type is available) static query/manipulation methods

 Dynamic Methods are similar to the Java Reflection mechanism. They

start with “e”, for example:

 eContainer()

 eContents()

 eCrossReferences()

 Static Methods are directly based on the meta model, for example in

UML2 ActivityNodes:

 getIncomingEdges()

 getOutgoingEdges()

 getName()

 ...

 We‟ll use the static methods, as they are easier to read.

SENSUS 2009 - Philip Mayer 12

www.sensoria-ist.eu

Querying EMF models #2

 Static querying and manipulation methods are based on the models‟

metamodel, for example, the UML2 meta model (MOF).

 They are named follow a certain pattern

 For simple attributes, there are getter and setter methods

 For associations and compositions, the list of elements can be retrieved with a

getter and then manipulated directly

 The available methods are therefore easily inferred from the meta model

(and, of course, from syntax completion).

 Example: Querying UML2 activity nodes for outgoing edges:

 if (object instanceof ActivityNode) {

 List<ActivityEdge> edges=

 ((ActivityNode)object).getOutgoings();

 for (ActivityEdge activityEdge : outgoings) {

 ...

SENSUS 2009 - Philip Mayer 13

www.sensoria-ist.eu

Reporting

 We'd like to report on "problems" found in the UML2 activities.

 In particular, we're interested in well-nestedness, i.e.

 Nodes which have several outgoing edges, but are no decision/merge nodes,

 Nodes which have several incoming edges, but are no decision/merge nodes,

 cycles not involving decision/merge nodes

 …

 We can get this information easily using the UML2 objects

 We'll then put them into a ProblemReport for reporting

 A ProblemReport contains several Problems. A problem consists of

 A problem description ("what is wrong?")

 The node causing the problem

 The activity the node belongs to

 The trace (from the beginning of the activity) to the problematic node

 We can then show the ProblemReport to the user.

SENSUS 2009 - Philip Mayer 14

www.sensoria-ist.eu

Show the report: Eclipse UI Integration

 For showing the report in the UI, we have several options

 We can use

 Dialogs, blocking user input until dealt with

 Editors, for example for a specific file type, or a non-file-based editor. Editors

support the concept of “dirtiness”, save, saveAs etc.

 Views, which is displayed in certain perspectives and is “dockable” to each

side of the workbench

 ...other mechanisms...

 In our case, we‟d like to add a new view which shows the problems

 A view is better than a dialog as it does not block user actions

 We do not have a concept of dirtiness here

SENSUS 2009 - Philip Mayer 15

www.sensoria-ist.eu

Adding a view

 To add a new view, we need to extend the workbench (again)

 In MANIFEST.MF/plugin.xml, select the Extensions tab

 Add a new org.eclipse.ui.views extension without a template.

 Use Runtime Workbench to test the new view

 Use Window > Show View to test the view

 Should be empty

 Now, the view should display the ProblemReport

 I.e., have a table which displays details about each problem that was

found

SENSUS 2009 - Philip Mayer 16

www.sensoria-ist.eu

Eclipse UIs – Meet SWT

 The Eclipse platform is based on SWT (The Standard Widget Toolkit) and

JFace for its UI

 SWT is a widget toolkit similar to Swing, but more directly based on native

widgets of the underlying operating system

 JFace is built on top of SWT and adds more advanced controls like
TableViewers, ListViewers, TreeViewers etc.

SENSUS 2009 - Philip Mayer 17

www.sensoria-ist.eu

TableViewer #1

 We would like to display a table with several columns to indicate the

problem, the node which caused the problem, the trace to the node etc.

 A JFace TableViewer displays such a complete table in several

TableColumns. It uses two additional classes for display:

 A ContentProvider, which provides the content (i.e. rows) for the table

 A LabelProvider, which provides the labels for each row and each column

of the row based on the content.

 Adding a TableViewer with some columns:
 fProblemViewer= new TableViewer(parent, ...)

 fProblemViewer.setContentProvider(new ViewContentProvider());

 fProblemViewer.setLabelProvider(new ViewLabelProvider());

 TableColumn col1= new TableColumn(...);

 col1.setText("Problem"); col1.setWidth(200);

 TableColumn col2= new TableColumn(...);

 col2.setText("Node"); col2.setWidth(200);

SENSUS 2009 - Philip Mayer 18

www.sensoria-ist.eu

TableViewer #2

 Adding content to a table viewer (use sparingly...)

 viewer.setInput(someInput)

 Content Display with

 IStructuredContentProvider

public Object[] getElements(Object parent) {

return ((ProblemReport) parent).getProblems().toArray();

}

 ITableLabelProvider

 public String getColumnText(Object obj, int index) {

 Problem p= (Problem) obj;

 switch (index) {

 case 0: ...

 case 1: ...

 }

 return null;

}

SENSUS 2009 - Philip Mayer 19

www.sensoria-ist.eu

Binding action and view together

 Right now, we have the ProblemReport in our action

 We need to get it to be displayed in our view.

 Use the workbench to show the view:

 ProblemView view= (ProblemView) getSite().getPage()

 .showView("umlproblemanalysis.views.ProblemView");

 Then, deliver the ProblemReport

 view.setProblemReport(report);

 The report should then be added to the viewer:

 fProblemViewer.setInput(report)

 Done!

SENSUS 2009 - Philip Mayer 20

www.sensoria-ist.eu

Integration into the SDE

 The SDE is an integration platform for (headless) scripting and

orchestration of several tools

 We therefore need to think about which functions of our tool might be of

help in such an environment

 We might add the following functions:

 Performing problem analysis, i.e. creating a ProblemReport from a set of

activities.

 Serializing the ProblemReport to a String for storage or later use

 Showing the ProblemReport to the user

 The first two functions are headless, the last is not.

 To provide these functions to the SDE, we need to write a Facade class

encapsulating our tool.

SENSUS 2009 - Philip Mayer 21

www.sensoria-ist.eu

Writing a Facade class

public class UMLProblemAnalysisService {

public ProblemReport analyseUMLList<Activity> activities) {

 return ProblemAnalysis.perform(activities);

}

public String serializeProblemReportProblemReport report) {

 return report.serialize();

}

public void showReportInUI(ProblemReport report) {

 Display.getDefault().asyncExec(new Runnable() {

 public void run() {

 //show view

 }

 }

}

}

SENSUS 2009 - Philip Mayer 22

Use Display Thread!

www.sensoria-ist.eu

SDE Integration

 In order to use the Facade class as a tool within the SDE, we need to

annotate it with additional metadata.

 The metadata is added through Java annotations.

 To use these annotations, we need to add the SDE plugin to our list of

dependencies

 eu.sensoria_ist.sde.core

 Add annotations to the class:

@SensoriaTool(name= "UML Problem Analysis Service",

categories= "Analysis", description= "...")

 Add annotations to each method:

@SensoriaToolFunction(description= "...")

@SensoriaToolFunctionReturns(description= "A string")

 And parameter

 @SensoriaToolFunctionParameter(description= "...")

SENSUS 2009 - Philip Mayer 23

www.sensoria-ist.eu

Adding the SDE extension

 Registering a tool with the SDE is the same process as adding an

extension to Eclipse – i.e., the SDE provides an extension point for tools

 SDE contributions do not need to be written by hand, but can be

generated from annotated classes

 To do so, right-click on the class in package explorer and select "Convert

to Sensoria Tool".

SENSUS 2009 - Philip Mayer 24

 A dialog is shown with the

complete extension as XML code

 The code can be pasted into
plugin.xml.

 Don„t forget to fill in the class

name!

www.sensoria-ist.eu

Finally…

 We can use the runtime workbench to check our contribution

 Direct invocation in the SDE UI is now possible

SENSUS 2009 - Philip Mayer 25

www.sensoria-ist.eu

…and more

 We can also add our own functions to a graphical orchestration to create

a complete workflow:

SENSUS 2009 - Philip Mayer 26

www.sensoria-ist.eu

Thank You!

SENSUS 2009 - Philip Mayer 27

