The SENSORIA Development Environment

Creating a Sensoria SDE Tool

Philip Mayer

Programming and Software Engineering Research Group
Department of Informatics

LMU Munich

Germany

Information Society

Technologies

WWwWw.sensoria-ist.eu

Creating a Sensoria SDE Tool

WWwWw.sensoria-ist.eu

An SDE-integrated tool can take many forms

The only requirement is some XML code to register a Java-Based API
(might be a wrapper) to the SDE

Mostly, however, SDE-Integrated Tools are fully-fledged Eclipse Plug-Ins
as well

= They provide their own Ul to the Eclipse platform
= Additionally, they offer API for scripting through the SDE

We will follow this approach in creating our own tool for the SDE

= We’'ll use the Eclipse PDE (Plug-In Development Environment) to create an
Eclipse Plug-In

= Later, we'll use the SDE Dev tools to add support for the SDE

N
Information Society SENSUS 2009 - Ph”ip Mayer 2

Technologies

The Tool

WWwWw.sensoria-ist.eu

We’'ll create a tool which enables us to check for “problems” (non-well-
nestedness, cycles...) in UML4SOA model files

We want to perform this check

= At any time, i.e. using the Ul for an arbitrary model
» |n an SDE workflow, for example before converting to BPEL.

Input of the tool: UML4SOA UML model of an orchestration
Output of the tool: Report on problems, if there are any, in the UI.

N
Information Society SENSUS 2009 - Phl'lp Mayer 3

Technologies

What we need...

WWwWw.sensoria-ist.eu

Eclipse (as our underlying platform). This includes
= Eclipse PDE (Plug-In Development Environment) for writing Plug-Ins

= SWT/JFace: The Standard Widget Toolkit is the Widget Toolkit used by
Eclipse (instead of Swing). JFace is an extension of this toolkit.

An UML input model. We'll use the output provided by MagicDraw, which
is an XML-based format. In Eclipse, we can use the following
tools/techniques to read the input and query it:

= EMF (Eclipse Modelling Framework)

= UML2Tools (UML2 Meta Model implemented in EMF)

The SDE. We use the SDE Dev tools to create an integration of our tool
into the SDE.

N2
Information Society SENSUS 2009 - Philip Mayer 4

Technologies

Creating an Eclipse Plugin

WWwWw.sensoria-ist.eu

We start by creating a new Eclipse project inside the workspace. To do
this, we follow these steps:

= Add a new Plug-In project
Select “Generate an Activator”
Select “This Plug-In will make contributions to the UI”
Do not select any template
= Exploring the Plug-In
MANIFEST.MF/plugin.xml contains meta-settings
Activator class contains setup routines
= Testing the Plug-In
Launch an Eclipse Runtime Workbench
(Nothing to see — no contributions to the Ul yet)

Now, we have an empty Plug-In we can use for our purposes.
How can we use it?

N
Information Society SENSUS 2009 - Phl'lp Mayer 5

Technologies

Contributing to Eclipse

WWwWw.sensoria-ist.eu

The Eclipse platform has a very open architecture — it enables plug-ins to
"extend" it at many places by contributing to an extension point.

Extension points exist for many purposes, for example for

...adding a new menu, or a menu entry (an action)
...adding a new editor

...adding a new view

...adding status line items, cool bar items, perspectives, etc.
...adding non-Ul items like source code control etc.

Plug-Ins contribute to an extension point by declaring an extension in
their plugin.xml file.

Each plug-in can also provide its own extension points and can therefore
be extended itself, making the system very flexible.

N

Information Society

Technologies

SENSUS 2009 - Philip Mayer 6

Adding an entry point

WWwWw.sensoria-ist.eu

In our case, the user must be able to execute the problem analysis based
on a UML model.

UML models reside in a file with a .uml extension.

To add an action to files, we need to extend the popup menu on files
In MANIFEST.MF/plugin.xml, select the Extensions tab

Add a new org.eclipse.ui.popupMenus extension with template
Popup Menu to create an object contribution

Enter some settings (stay with IFile as contribution object)
Use Runtime Workbench to test

Restricting the contribution to .uml files:
= Add “*.um1” as name filter on the object contribution.

N2
Information Society SENSUS 2009 - Philip Mayer 7

Technologies

EMF

WWwWw.sensoria-ist.eu

UML models in .uml files are stored in an XML dialect which we can
process using the Eclipse Modelling Framework (EMF).

EMF allows creation of meta-models of arbitrary domains; for example,
the UML2 language.

Concrete instances of these meta-models, i.e. models, can then be
created, queried, and manipulated either dynamically, or through
generated Java classes.

The Eclipse project provides a complete meta-model of the UML2 based
on EMF.

This means we can load, store, create, and manipulate UML2 models
using the EMF mechanisms.

In our case, we can load and query a UML2 model ina .uml file through
EMF.

N
Information Society SENSUS 2009 - Phl'lp Mayer 8

Technologies

Loading EMF models

WWwWw.sensoria-ist.eu

In our action, we get the selected UML file through the selection:
"= (IFile) ((IStructuredSelection)selection).getFirstElement ()

A .uml file contains a serialized UML model in XMI format. The specific
XMI format is the one defined by EMF.

Therefore, we can use EMF deserialization classes to load the model
back into memory.

We need the EMF classes to do this, so add the EMF plugins as
dependencies
" org.eclipse.emf

" org.eclipse.emf.ecore.xmil

EMF serialization puts objects into resources (basically, files).

A resource loads data from a file, the resource can then be queried for the
actual model.

N
Information Society SENSUS 2009 - Phl'lp Mayer 9

Technologies

Resource Contents

WWwWw.sensoria-ist.eu

Load the EMF resource

" ResourceSet set= new ResourceSetImpl () ;

" Resource resource= set.getResource (URI.createFileURI (
theUMLFile.getLocation () .toString()), true);

Get actual model elements:

"= EList<EObject> contents= resource.getContents();

= or

= Treelterator<EObject> allContents=
resource.getAllContents () ;

The contents of an EMF resource are Eobjects which are related to one
another (by associations, compositions, ...).

They belong to an EMF metamodel, which is defined somewhere and
registered with the EMF core

In our case, we need the UML2 meta model to deal with these Eobjects.

W=
Information Society SENSUS 2009 - Phl'lp Mayer 10

Technologies

UML2 Meta Model

WWwWw.sensoria-ist.eu

To use the UML2 EMF metamodel, add a dependency:

" org.eclipse.uml2.uml

You can also import the model with Import > Plug-Ins and Fragments.

The metamodel defines EObjects like Activity, Class, Pin, ...
To use these, cast the EObjects to the actual classes, e.g.

= Tf (someObject instanceof Activity)
doSomethingWith ((Activity) someObject) ;

We are interested in UML Activities (the UML4SOA base construct for
modelling orchestrations). Collect these, then

Perform Problem Analysis
This is done by querying the in-memory EMF model.

Note. There are other metamodels written in EMF for many purposes and
languages — check Google before creating your own.

W=
Information Society SENSUS 2009 - Phl'lp Mayer 11

Technologies

Querying EMF models #1

WWwWw.sensoria-ist.eu

EMF model objects are all based on the EObject root class

They contain dynamic query/manipulation methods and (if a concrete
type is available) static query/manipulation methods

Dynamic Methods are similar to the Java Reflection mechanism. They
start with “e”, for example:

" eContainer ()

= eContents ()

" eCrossReferences ()

Static Methods are directly based on the meta model, for example in
UML2 ActivityNodes:

"= getIncomingEdges ()

= getOutgoingEdges ()

= getName ()

We'll use the static methods, as they are easier to read.

W=
Information Society SENSUS 2009 - Phl'lp Mayer 12

Technologies

Querying EMF models #2

WWwWw.sensoria-ist.eu

Static querying and manipulation methods are based on the models’
metamodel, for example, the UML2 meta model (MOF).

They are named follow a certain pattern
= For simple attributes, there are getter and setter methods

= For associations and compositions, the list of elements can be retrieved with a
getter and then manipulated directly

The available methods are therefore easily inferred from the meta model
(and, of course, from syntax completion).

Example: Querying UML2 activity nodes for outgoing edges:
1f (object instanceof ActivityNode) {
List<ActivityEdge> edges=
((ActivityNode) object) .getOutgoings () ;
for (ActivityEdge activityEdge : outgoings) {

W=
Information Society SENSUS 2009 - Phl'lp Mayer 13

Technologies

Reporting

WWwWw.sensoria-ist.eu

We'd like to report on "problems” found in the UML2 activities.

In particular, we're interested in well-nestedness, i.e.
= Nodes which have several outgoing edges, but are no decision/merge nodes,
= Nodes which have several incoming edges, but are no decision/merge nodes,
= cycles not involving decision/merge nodes

We can get this information easily using the UML2 objects

We'll then put them into a ProblemReport for reporting
A ProblemReport contains several Problems. A problem consists of

= A problem description ("what is wrong?")

» The node causing the problem

= The activity the node belongs to

= The trace (from the beginning of the activity) to the problematic node

We can then show the ProblemReport to the user.

N
Information Society SENSUS 2009 - Phl'lp Mayer 14

Technologies

Show the report: Eclipse Ul Integration

WWwWw.sensoria-ist.eu

For showing the report in the Ul, we have several options

We can use
= Dialogs, blocking user input until dealt with
= Editors, for example for a specific file type, or a non-file-based editor. Editors
support the concept of “dirtiness”, save, saveAs etc.

= Views, which is displayed in certain perspectives and is “dockable” to each
side of the workbench
= ...other mechanisms...

In our case, we'd like to add a new view which shows the problems
A view is better than a dialog as it does not block user actions
We do not have a concept of dirtiness here

NV _

Information Society

Technologies

Adding a view

WWwWw.sensoria-ist.eu

To add a new view, we need to extend the workbench (again)
In MANIFEST.MF/plugin.xml, select the Extensions tab

Add a new org.eclipse.ui.views €xtension without a template.

Use Runtime Workbench to test the new view
= Use Window > Show View to testthe view
= Should be empty

Now, the view should display the ProblemReport

l.e., have a table which displays details about each problem that was
found

N

Information Society SENSUS 2009 - Phl'lp Mayer 16

Technologies

Eclipse Uls - Meet SWT

WWwWw.sensoria-ist.eu

The Eclipse platform is based on SWT (The Standard Widget Toolkit) and
JFace for its Ul

SWT is a widget toolkit similar to Swing, but more directly based on native
widgets of the underlying operating system

JFace is built on top of SWT and adds more advanced controls like
TableViewers, ListViewers, TreeViewers etc.

Tab0 |Tab1 | Tabz Standard Widget =
TabItem Content: O = Efficient Portable
 one () Two () Three Cross Platform
Makive Controls .
Jack and Jill wenk up
the hill ko Fetch a pail Type Size
of water, Jack Fell Totally
down and broke his [] Gindex:0 classes 0 -
crown and Jill came databases Z55€
kurnbling after! B images o157
classes 0

Aztaharar PECF

l I“V =
Information Society SENSUS 2009 - Philip Mayer 17

Technologies

TableViewer #1

WWwWw.sensoria-ist.eu

We would like to display a table with several columns to indicate the
problem, the node which caused the problem, the trace to the node etc.

A JFace Tableviewer displays such a complete table in several
TableColumns. It uses two additional classes for display:
» AcContentProvider, which provides the content (i.e. rows) for the table

» AlLabelProvider, which provides the labels for each row and each column
of the row based on the content.

Adding a TableViewer with some columns:
= fProblemViewer= new TableViewer (parent, ...)
= fProblemViewer.setContentProvider (new ViewContentProvider()) ;

= fProblemViewer.setLabelProvider (new ViewLabelProvider()) ;

= TableColumn coll= new TableColumn(...),
" coll.setText ("Problem"); coll.setWidth (200);

= TableColumn col2= new TableColumn(...)/,
" col2.setText ("Node"); col2.setWidth (200) ;
N2

Information Society SENSUS 2009 - Phl'lp Mayer 18

Technologies

TableViewer #2

WWwWw.sensoria-ist.eu

Adding content to a table viewer (use sparingly...)
" viewer.setInput (somelnput)

Content Display with
= TIStructuredContentProvider

public Object[] getElements (Object parent) {
return ((ProblemReport) parent) .getProblems () .toArray()

= ITablelLabelProvider
public String getColumnText (Object obj, 1int index) {
Problem p= (Problem) obj;
switch (index) {

case O:

case 1:

}

return null;

BWE
Information Society SENSUS 2009 - Philip Mayer 19

Technologies

Binding action and view together

WWwWw.sensoria-ist.eu

Right now, we have the ProblemReport in our action
We need to get it to be displayed in our view.

Use the workbench to show the view:
" ProblemView view= (ProblemView) getSite () .getPage()

.showView ("umlproblemanalysis.views.ProblemView") ;

Then, deliver the ProblemReport

view.setProblemReport (report) ;

The report should then be added to the viewer:
fProblemViewer.setInput (report)

Done!

IIAIZ
Information Society SENSUS 2009 - Philip Mayer

Technologies

20

Integration into the SDE

WWwWw.sensoria-ist.eu

The SDE is an integration platform for (headless) scripting and
orchestration of several tools

We therefore need to think about which functions of our tool might be of
help in such an environment

We might add the following functions:

= Performing problem analysis, i.e. creating a ProblemReport from a set of
activities.

» Serializing the ProblemReport to a String for storage or later use
= Showing the ProblemReport to the user

The first two functions are headless, the last is not.

To provide these functions to the SDE, we need to write a Facade class
encapsulating our tool.

N
Information Society SENSUS 2009 - Phl'lp Mayer 21

Technologies

Writing a Facade class

www.sensoria-ist.eu
public class UMLProblemAnalysisService {

public ProblemReport analyseUMLList<Activity> activities) {

return ProblemAnalysis.perform(activities)

public String serializeProblemReportProblemReport report) {

return report.serialize();

public void showReportInUI (ProblemReport report) {
Display.getDefault () .asyn ec (new Runnable () {
public void run() {

//show view

Use Display Thread!

}
BDEE

Information Society SENSUS 2009 - Philip Mayer 22

Technologies

SDE Integration

WWwWw.sensoria-ist.eu

In order to use the Facade class as a tool within the SDE, we need to
annotate it with additional metadata.
The metadata is added through Java annotations.

To use these annotations, we need to add the SDE plugin to our list of
dependencies

eu.sensoria_ist.sde.core

Add annotations to the class:
@SensoriaTool (name= "UML Problem Analysis Service",
categories= "Analysis", description= "...")

Add annotations to each method:
@SensoriaToolFunction (description= "...")
@SensoriaToolFunctionReturns (description= "A string")

And parameter
@SensoriaToolFunctionParameter (description= "...")

W=
Information Society SENSUS 2009 - Phl'lp Mayer 23

Technologies

Adding the SDE extension

WWwWw.sensoria-ist.eu

Registering a tool with the SDE is the same process as adding an
extension to Eclipse —i.e., the SDE provides an extension point for tools

SDE contributions do not need to be written by hand, but can be
generated from annotated classes

To do so, right-click on the class in package explorer and select "Convert
to Sensoria Tool".

r k|
= XML Result = | [E] |t

Please copy the text below and insert it inte your pluginxml manifest.

. . . |<E:d:er15i0n -
A dlalog IS Shown Wlth the Einotl:"eu.sensoria_i5t.casetoo|.c0re.t00|">
Complete extenSIOn as XML Code Lda:r;:qulﬂIr\:Els:zET:::iii;;iigsrg;?.c:rl\ﬂLProbIemAnaIysisSer\rice" |
. descrietion:"Analysif problems in UML activity diagrams” 1
The code can be pasted into e O e
' name="Analysis"> | 4
plugin.xml. yestegorp
. . name="analyseUML"
Don‘t forget to fl” In the CIaSS returns:"um:l'lrpr_nbIelrl'nanal}rsis.popup.a“cti-:ns.ProbIemReport"
returnsDescription="A problem report

nam e | description="Analysis UML activity diagrams for problems”>
. <parameter
name="activities"
description="A list of UML activities"
type="java.util List">
</parameter> -
1| n s

N
Information Society SENSUS 2009 - Phl'lp Mayer 24

Technologies

Finally...

WWwWw.sensoria-ist.eu

We can use the runtime workbench to check our contribution
Direct invocation in the SDE Ul is now possible
& Sensoria Browser &3 s Mavigator = O | # UML Problem Analysis Service 2

£ local: Local Core

S UML Problem Analysis Service

- Analysis
=, UML Problem Analysis Service Infﬂ: _ _ _

= Code Generation Basic infermation about this tool
= UMLZBPEL/WSDL Converter Id:

umlproblemanalysis.integratiocn.UMLProblemAnalysisser
Mame: UML Problem Analysis Service

Description: Analysis problems in UML activity diagrams

t== Remote Service
% Remote service server

t- Sensoria
=5, Sensoria Core Registry Service =
% Sensoria Core Service Fum?'tlcrns]
&, Sensoria U Service Available functions
tz- Transformation . PrDb|EmREDD¢ anqlvse!JMLfList activities)
<5 UML2BPEL/WSDL Converter Analysis UML activity diagrams for problemns

® String senializeProblemPeport(ProblemPeport report]
Generates a serializeable representation of the problem report

* yoid showReportinUI(ProblemBeport report)
Shows a problem report to the user

l I“V =
Information Society SENSUS 2009 - Philip Mayer 25

Technologies

...and more

WWwWw.sensoria-ist.eu

We can also add our own functions to a graphical orchestration to create
a complete workflow:

BNE
=
Information Society

Technologies

umlfile

=

gt checkUML

’_‘(‘ medel:IFile

[@ e]

activities:List

report:ProblemPeport activities:List

[@5hwﬁepnrﬂnLﬂ| ‘ [z analyseUML]

problemBeport:ProblemBeport

SENSUS 2009 - Philip Mayer

26

WWwWw.sensoria-ist.eu

Thank Youl!

E*\’ = SENSUS 2009 - Philip Mayer 27

Information Society

Technologies

