
www.sensoria-ist.eu

The SENSORIA Development Environment

Creating a Sensoria SDE Tool

Philip Mayer

Programming and Software Engineering Research Group

Department of Informatics

LMU Munich

Germany

www.sensoria-ist.eu

Creating a Sensoria SDE Tool

 An SDE-integrated tool can take many forms

 The only requirement is some XML code to register a Java-Based API

(might be a wrapper) to the SDE

 Mostly, however, SDE-Integrated Tools are fully-fledged Eclipse Plug-Ins

as well

 They provide their own UI to the Eclipse platform

 Additionally, they offer API for scripting through the SDE

 We will follow this approach in creating our own tool for the SDE

 We‟ll use the Eclipse PDE (Plug-In Development Environment) to create an

Eclipse Plug-In

 Later, we‟ll use the SDE Dev tools to add support for the SDE

SENSUS 2009 - Philip Mayer 2

www.sensoria-ist.eu

The Tool

 We‟ll create a tool which enables us to check for “problems” (non-well-

nestedness, cycles...) in UML4SOA model files

 We want to perform this check

 At any time, i.e. using the UI for an arbitrary model

 In an SDE workflow, for example before converting to BPEL.

 Input of the tool: UML4SOA UML model of an orchestration

 Output of the tool: Report on problems, if there are any, in the UI.

SENSUS 2009 - Philip Mayer 3

www.sensoria-ist.eu

What we need...

 Eclipse (as our underlying platform). This includes

 Eclipse PDE (Plug-In Development Environment) for writing Plug-Ins

 SWT/JFace: The Standard Widget Toolkit is the Widget Toolkit used by

Eclipse (instead of Swing). JFace is an extension of this toolkit.

 An UML input model. We‟ll use the output provided by MagicDraw, which

is an XML-based format. In Eclipse, we can use the following

tools/techniques to read the input and query it:

 EMF (Eclipse Modelling Framework)

 UML2Tools (UML2 Meta Model implemented in EMF)

 The SDE. We use the SDE Dev tools to create an integration of our tool

into the SDE.

SENSUS 2009 - Philip Mayer 4

www.sensoria-ist.eu

Creating an Eclipse Plugin

 We start by creating a new Eclipse project inside the workspace. To do

this, we follow these steps:

 Add a new Plug-In project

 Select “Generate an Activator”

 Select “This Plug-In will make contributions to the UI”

 Do not select any template

 Exploring the Plug-In

 MANIFEST.MF/plugin.xml contains meta-settings

 Activator class contains setup routines

 Testing the Plug-In

 Launch an Eclipse Runtime Workbench

 (Nothing to see – no contributions to the UI yet)

 Now, we have an empty Plug-In we can use for our purposes.

 How can we use it?

SENSUS 2009 - Philip Mayer 5

www.sensoria-ist.eu

Contributing to Eclipse

 The Eclipse platform has a very open architecture – it enables plug-ins to

"extend" it at many places by contributing to an extension point.

 Extension points exist for many purposes, for example for

 …adding a new menu, or a menu entry (an action)

 …adding a new editor

 …adding a new view

 …adding status line items, cool bar items, perspectives, etc.

 …adding non-UI items like source code control etc.

 …

 Plug-Ins contribute to an extension point by declaring an extension in
their plugin.xml file.

 Each plug-in can also provide its own extension points and can therefore

be extended itself, making the system very flexible.

SENSUS 2009 - Philip Mayer 6

www.sensoria-ist.eu

Adding an entry point

 In our case, the user must be able to execute the problem analysis based

on a UML model.

 UML models reside in a file with a .uml extension.

 To add an action to files, we need to extend the popup menu on files

 In MANIFEST.MF/plugin.xml, select the Extensions tab

 Add a new org.eclipse.ui.popupMenus extension with template

Popup Menu to create an object contribution

 Enter some settings (stay with IFile as contribution object)

 Use Runtime Workbench to test

 Restricting the contribution to .uml files:

 Add “*.uml” as name filter on the object contribution.

SENSUS 2009 - Philip Mayer 7

www.sensoria-ist.eu

EMF

 UML models in .uml files are stored in an XML dialect which we can

process using the Eclipse Modelling Framework (EMF).

 EMF allows creation of meta-models of arbitrary domains; for example,

the UML2 language.

 Concrete instances of these meta-models, i.e. models, can then be

created, queried, and manipulated either dynamically, or through

generated Java classes.

 The Eclipse project provides a complete meta-model of the UML2 based

on EMF.

 This means we can load, store, create, and manipulate UML2 models

using the EMF mechanisms.

 In our case, we can load and query a UML2 model in a .uml file through

EMF.

 SENSUS 2009 - Philip Mayer 8

www.sensoria-ist.eu

Loading EMF models

 In our action, we get the selected UML file through the selection:
 (IFile) ((IStructuredSelection)selection).getFirstElement();

 A .uml file contains a serialized UML model in XMI format. The specific

XMI format is the one defined by EMF.

 Therefore, we can use EMF deserialization classes to load the model

back into memory.

 We need the EMF classes to do this, so add the EMF plugins as

dependencies

 org.eclipse.emf

 org.eclipse.emf.ecore.xmi

 EMF serialization puts objects into resources (basically, files).

 A resource loads data from a file, the resource can then be queried for the

actual model.

SENSUS 2009 - Philip Mayer 9

www.sensoria-ist.eu

Resource Contents

 Load the EMF resource

 ResourceSet set= new ResourceSetImpl();

 Resource resource= set.getResource(URI.createFileURI(

 theUMLFile.getLocation().toString()), true);

 Get actual model elements:

 EList<EObject> contents= resource.getContents();

 or

 TreeIterator<EObject> allContents=

 resource.getAllContents();

 The contents of an EMF resource are EObjects which are related to one

another (by associations, compositions, ...).

 They belong to an EMF metamodel, which is defined somewhere and

registered with the EMF core

 In our case, we need the UML2 meta model to deal with these EObjects.

SENSUS 2009 - Philip Mayer 10

www.sensoria-ist.eu

UML2 Meta Model

 To use the UML2 EMF metamodel, add a dependency:

 org.eclipse.uml2.uml

 You can also import the model with Import > Plug-Ins and Fragments.

 The metamodel defines EObjects like Activity, Class, Pin, ...

 To use these, cast the EObjects to the actual classes, e.g.

 If (someObject instanceof Activity)

 doSomethingWith((Activity)someObject);

 We are interested in UML Activities (the UML4SOA base construct for

modelling orchestrations). Collect these, then

 Perform Problem Analysis

 This is done by querying the in-memory EMF model.

 Note. There are other metamodels written in EMF for many purposes and

languages – check Google before creating your own.

SENSUS 2009 - Philip Mayer 11

www.sensoria-ist.eu

Querying EMF models #1

 EMF model objects are all based on the EObject root class

 They contain dynamic query/manipulation methods and (if a concrete

type is available) static query/manipulation methods

 Dynamic Methods are similar to the Java Reflection mechanism. They

start with “e”, for example:

 eContainer()

 eContents()

 eCrossReferences()

 Static Methods are directly based on the meta model, for example in

UML2 ActivityNodes:

 getIncomingEdges()

 getOutgoingEdges()

 getName()

 ...

 We‟ll use the static methods, as they are easier to read.

SENSUS 2009 - Philip Mayer 12

www.sensoria-ist.eu

Querying EMF models #2

 Static querying and manipulation methods are based on the models‟

metamodel, for example, the UML2 meta model (MOF).

 They are named follow a certain pattern

 For simple attributes, there are getter and setter methods

 For associations and compositions, the list of elements can be retrieved with a

getter and then manipulated directly

 The available methods are therefore easily inferred from the meta model

(and, of course, from syntax completion).

 Example: Querying UML2 activity nodes for outgoing edges:

 if (object instanceof ActivityNode) {

 List<ActivityEdge> edges=

 ((ActivityNode)object).getOutgoings();

 for (ActivityEdge activityEdge : outgoings) {

 ...

SENSUS 2009 - Philip Mayer 13

www.sensoria-ist.eu

Reporting

 We'd like to report on "problems" found in the UML2 activities.

 In particular, we're interested in well-nestedness, i.e.

 Nodes which have several outgoing edges, but are no decision/merge nodes,

 Nodes which have several incoming edges, but are no decision/merge nodes,

 cycles not involving decision/merge nodes

 …

 We can get this information easily using the UML2 objects

 We'll then put them into a ProblemReport for reporting

 A ProblemReport contains several Problems. A problem consists of

 A problem description ("what is wrong?")

 The node causing the problem

 The activity the node belongs to

 The trace (from the beginning of the activity) to the problematic node

 We can then show the ProblemReport to the user.

SENSUS 2009 - Philip Mayer 14

www.sensoria-ist.eu

Show the report: Eclipse UI Integration

 For showing the report in the UI, we have several options

 We can use

 Dialogs, blocking user input until dealt with

 Editors, for example for a specific file type, or a non-file-based editor. Editors

support the concept of “dirtiness”, save, saveAs etc.

 Views, which is displayed in certain perspectives and is “dockable” to each

side of the workbench

 ...other mechanisms...

 In our case, we‟d like to add a new view which shows the problems

 A view is better than a dialog as it does not block user actions

 We do not have a concept of dirtiness here

SENSUS 2009 - Philip Mayer 15

www.sensoria-ist.eu

Adding a view

 To add a new view, we need to extend the workbench (again)

 In MANIFEST.MF/plugin.xml, select the Extensions tab

 Add a new org.eclipse.ui.views extension without a template.

 Use Runtime Workbench to test the new view

 Use Window > Show View to test the view

 Should be empty

 Now, the view should display the ProblemReport

 I.e., have a table which displays details about each problem that was

found

SENSUS 2009 - Philip Mayer 16

www.sensoria-ist.eu

Eclipse UIs – Meet SWT

 The Eclipse platform is based on SWT (The Standard Widget Toolkit) and

JFace for its UI

 SWT is a widget toolkit similar to Swing, but more directly based on native

widgets of the underlying operating system

 JFace is built on top of SWT and adds more advanced controls like
TableViewers, ListViewers, TreeViewers etc.

SENSUS 2009 - Philip Mayer 17

www.sensoria-ist.eu

TableViewer #1

 We would like to display a table with several columns to indicate the

problem, the node which caused the problem, the trace to the node etc.

 A JFace TableViewer displays such a complete table in several

TableColumns. It uses two additional classes for display:

 A ContentProvider, which provides the content (i.e. rows) for the table

 A LabelProvider, which provides the labels for each row and each column

of the row based on the content.

 Adding a TableViewer with some columns:
 fProblemViewer= new TableViewer(parent, ...)

 fProblemViewer.setContentProvider(new ViewContentProvider());

 fProblemViewer.setLabelProvider(new ViewLabelProvider());

 TableColumn col1= new TableColumn(...);

 col1.setText("Problem"); col1.setWidth(200);

 TableColumn col2= new TableColumn(...);

 col2.setText("Node"); col2.setWidth(200);

SENSUS 2009 - Philip Mayer 18

www.sensoria-ist.eu

TableViewer #2

 Adding content to a table viewer (use sparingly...)

 viewer.setInput(someInput)

 Content Display with

 IStructuredContentProvider

public Object[] getElements(Object parent) {

return ((ProblemReport) parent).getProblems().toArray();

}

 ITableLabelProvider

 public String getColumnText(Object obj, int index) {

 Problem p= (Problem) obj;

 switch (index) {

 case 0: ...

 case 1: ...

 }

 return null;

}

SENSUS 2009 - Philip Mayer 19

www.sensoria-ist.eu

Binding action and view together

 Right now, we have the ProblemReport in our action

 We need to get it to be displayed in our view.

 Use the workbench to show the view:

 ProblemView view= (ProblemView) getSite().getPage()

 .showView("umlproblemanalysis.views.ProblemView");

 Then, deliver the ProblemReport

 view.setProblemReport(report);

 The report should then be added to the viewer:

 fProblemViewer.setInput(report)

 Done!

SENSUS 2009 - Philip Mayer 20

www.sensoria-ist.eu

Integration into the SDE

 The SDE is an integration platform for (headless) scripting and

orchestration of several tools

 We therefore need to think about which functions of our tool might be of

help in such an environment

 We might add the following functions:

 Performing problem analysis, i.e. creating a ProblemReport from a set of

activities.

 Serializing the ProblemReport to a String for storage or later use

 Showing the ProblemReport to the user

 The first two functions are headless, the last is not.

 To provide these functions to the SDE, we need to write a Facade class

encapsulating our tool.

SENSUS 2009 - Philip Mayer 21

www.sensoria-ist.eu

Writing a Facade class

public class UMLProblemAnalysisService {

public ProblemReport analyseUMLList<Activity> activities) {

 return ProblemAnalysis.perform(activities);

}

public String serializeProblemReportProblemReport report) {

 return report.serialize();

}

public void showReportInUI(ProblemReport report) {

 Display.getDefault().asyncExec(new Runnable() {

 public void run() {

 //show view

 }

 }

}

}

SENSUS 2009 - Philip Mayer 22

Use Display Thread!

www.sensoria-ist.eu

SDE Integration

 In order to use the Facade class as a tool within the SDE, we need to

annotate it with additional metadata.

 The metadata is added through Java annotations.

 To use these annotations, we need to add the SDE plugin to our list of

dependencies

 eu.sensoria_ist.sde.core

 Add annotations to the class:

@SensoriaTool(name= "UML Problem Analysis Service",

categories= "Analysis", description= "...")

 Add annotations to each method:

@SensoriaToolFunction(description= "...")

@SensoriaToolFunctionReturns(description= "A string")

 And parameter

 @SensoriaToolFunctionParameter(description= "...")

SENSUS 2009 - Philip Mayer 23

www.sensoria-ist.eu

Adding the SDE extension

 Registering a tool with the SDE is the same process as adding an

extension to Eclipse – i.e., the SDE provides an extension point for tools

 SDE contributions do not need to be written by hand, but can be

generated from annotated classes

 To do so, right-click on the class in package explorer and select "Convert

to Sensoria Tool".

SENSUS 2009 - Philip Mayer 24

 A dialog is shown with the

complete extension as XML code

 The code can be pasted into
plugin.xml.

 Don„t forget to fill in the class

name!

www.sensoria-ist.eu

Finally…

 We can use the runtime workbench to check our contribution

 Direct invocation in the SDE UI is now possible

SENSUS 2009 - Philip Mayer 25

www.sensoria-ist.eu

…and more

 We can also add our own functions to a graphical orchestration to create

a complete workflow:

SENSUS 2009 - Philip Mayer 26

www.sensoria-ist.eu

Thank You!

SENSUS 2009 - Philip Mayer 27

