
www.sensoria-ist.eu

The SENSORIA Development Environment

Goals, Benefits, Implementation and Usage

Philip Mayer

Programming and Software Engineering Research Group

Department of Informatics

LMU Munich

Germany

www.sensoria-ist.eu

Outline

 Sensoria break-down: Formal methods & tools

 From a tooling perspective: How Sensoria views SOA development

 Introducing the SDE

 SDE Aims

 SDE Design & Implementation

 Tools in the SDE

 Using the SDE

 SDE Internals

SENSUS 2009 - Philip Mayer 2

www.sensoria-ist.eu

About Sensoria

 Sensoria stands for Software Engineering for Service-Oriented

Overlay Computers

 Sensoria is an EU-sponsored research project spanning 3 universities, 2

research institutes and 4 companies from 7 European countries

The aim of Sensoria is the development of new

methodologies and tools for the development of

Service-Oriented Software Systems

SENSUS 2009 - Philip Mayer 3

www.sensoria-ist.eu

Sensoria Output

 Sensoria aims at providing researchers and practitioners with concepts

and tools for

 modeling,

 checking, analyzing, and verifying,

 transforming,

 and deploying

...service-oriented software systems

 Some of the results are highly theoretical, others result in tools (and

some in both).

 In this talk, I will focus on a tooling perspective on Sensoria, i.e. the

question

How can we support, through tools based on formal methods, the

development process of Service-Oriented Systems?

SENSUS 2009 - Philip Mayer 4

www.sensoria-ist.eu

Supported Steps in the Development Process

The Sensoria project provides solutions (tools) for each of these areas:

SENSUS 2009 - Philip Mayer 5

www.sensoria-ist.eu

Tools, Tools, Tools

 There are quite a few tools developed within Sensoria, over a dozen are

listed on the website

 Initially, they were developed independently and did not cooperate with

one another

 However, there are several scenarios in which developers might want to

use a combination of these tools

 For example:

a. Modelling in UML

b. Checking the model using a formal language

c. Transforming automatically in-between those two.

 Three tools for one task!

 The question was how to bring all these tools together

 The answer is a lightweight integrated development environment to

with the tools can be contributed.

 SENSUS 2009 - Philip Mayer 6

www.sensoria-ist.eu

Requirements for an integration tool

 An integration tool should

 ...for users: Enable them to use discover and use tools alone or in

combination, with the ability to write orchestrations of tools to use as a

new tool (idea of service orchestrations).

 ...for developers: Enable easy integration of a tool API, and

straightforward publishing of tools (idea of yellow pages)

 We address these requirements with the Sensoria Development

Environment (SDE)

 Benefits include

 A means of providing SENSORIA tools from a central location

 A homogeneous platform for using the SENSORIA tools

 Ability to compose tools and run tool chains automatically

SENSUS 2009 - Philip Mayer 7

www.sensoria-ist.eu

The Sensoria Development Environment

 The Sensoria Development Environment is a lightweight OSGi/Eclipse-

based integration platform for developing SOA-based software

 The SDE consists of the integration platform (SDE Core) and integrated

tools:

 Tools are registered with the SDE Core

 The core also handles the registry (finding tools) and tool automation

(through scripts or orchestrations)

8 SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Key Features of the SDE/SDE Core

 A SOA-based platform

 The SDE Core is based on a Service-Oriented Architecture itself

 The tools hosted in the SDE Core are registered and handled as services

 A service registry allows discovery of tools

 A Composition Infrastructure

 Composition, or orchestration, of services is a key concept of SOAs

 It allows composing existing services to form a new one

 The SDE Core enables this process for tools to automate commonly used

workflows

 A Focus On Usability

 Many Sensoria tools are based on formal methods and languages

 The idea is to expose as much functionality and as little low-level code as

possible

 The SDE architecture encourages use of automated model transformations to

translate between high-level models and formal specifications

SENSUS 2009 - Philip Mayer 9

www.sensoria-ist.eu

Tools in the SDE

 A tool, integrated into the SDE, is an entity with a name, a description,

etc, and a list of invokable functions (API)

 A function is the basic execution unit of a tool. It takes arbitrary

(developer-defined) parameters and may return an arbitrary object as

well.

 A function has attached metadata which describes the parameters and return

types in more detail.

 Furthermore, each tool may contain options which can be changed

through the framework.

 Once a user has retrieved a tool from the SDE registry, invocation of

functions is done directly.

 The SDE also contains a UI for talking directly to the tools (mainly for

debugging reasons).

SENSUS 2009 - Philip Mayer 10

www.sensoria-ist.eu

Advanced features

 A particularly useful feature of the SDE is tool composition, or

orchestration:

 All tools within the SDE provide a public interface

 This interface can be used from orchestration languages (text-based or

graphical) to create new tools combined from existing ones

 The SDE contains two default orchestration mechanisms

 A JavaScript-based textual script editor + execution environment

 A graphical (UML activity diagrams-like) orchestration editor with cross-

translation to Java for execution.

 Another feature of the SDE is remote invocation

 The SDE core is inherently distributed

 I.e., each installation contains a networking core which can be linked with

other through R-OSGI (Remote OSGi)

 This allows using tools installed on other machines, and transferring

data between them.

11 SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Using tools Tool Browser
Lists available tools,

ordered by category

Function Browser
Lists functionality

available in a tool

Orchestration
Defines data flow

between tool functions

Blackboard
Stores data in-between tool

function calls

Shell
Allows direct access to

tool functions

SENSUS 2009 - Philip Mayer 12

www.sensoria-ist.eu

The SDE and Eclipse

Basic functionality demo

www.sensoria-ist.eu

What can we do with the SDE?

 Back to this diagram:

 The SDE contains tools from several parts of the SOA development

process. Let’s have a look at what’s integrated:

SENSUS 2009 - Philip Mayer 14

www.sensoria-ist.eu

UML4SOA Profile
(Modelling)

 Aim is simple and easy specification of SOA artefacts in UML

 Focuses on behavioural aspects

 Statical aspects are re-used from soaML.

Modelling Tools

SENSUS 2009 - Philip Mayer 15 Philip Mayer 15

SRML
(Modelling)

 The Sensoria Reference Modelling Language is a high-level language

for modelling service-oriented systems, that includes a syntax and a

mathematical semantics

 SCA-like structure (components, external services, wires)

 declarative description of the business logic based on interactions

RML

www.sensoria-ist.eu

Transformation/Code Generation

VIATRA2 + UML2WSDL
(Transformation)

 VIATRA2 is a transformation language and framework

 Aim is simple and easy specification of model transformations

 MDD4SOA Transformers
(Transformation)

 MDD4SOA includes a set of transformers for converting UML4SOA

models

 Target languages are BPEL/WSDL, Java, and Jolie

SENSUS 2009 - Philip Mayer 16

www.sensoria-ist.eu

Analysis

LTSA/WS-Engineer
(Qualitative Analysis)

 perform model checking on UML diagrams or BPEL code

 Aim is detection of deadlocks or other qualitative properties

PEPA
(Quantitative Analysis)

 Perform runtime analysis on UML diagrams

 Aim is understanding of the distribution of time spent in the various parts

of the program

SENSUS 2009 - Philip Mayer 17

L

 T

 S

 A

PEPA

www.sensoria-ist.eu

More Analysis

LySaTool
(Analysis)

 Tool for verifying security properties of protocols that use cryptography

 Based on protocols modelled in LySa (a process calculus)

 Through program analysis, the LySaTool can guarantee confidentiality

and authentication properties.

CMC - UMC UCTL/Socl

model checkers
(Analysis)

 Model checker for systems defined by interacting UML statecharts.

 Allows to model-check on the fly abstract behavioral properties in the Socl

braching-time state-action based, parametric temporal logic

SENSUS 2009 - Philip Mayer 18

www.sensoria-ist.eu

Analysis / Runtime

MDD4SOA Analyser
(Analysis)

 verifies that an orchestration follows the defined protocol

 Aim is spotting protocol errors before deployment

DINO
(Runtime)

 Dino is a runtime discovery and binding service

 Aim is dynamic selection of services according to properties at runtime

SENSUS 2009 - Philip Mayer 19

DINO

www.sensoria-ist.eu

Using the SDE on a concrete case study

Performing checks in an eUniversity SOA

www.sensoria-ist.eu

How does the SDE work internally?

 Back to the initial ideas about the SDE:

 Questions we have not answered yet:

 How does the SDE core look like, exactly?

 How are tools integrated into the SDE?

 Read on...

SENSUS 2009 - Philip Mayer 21

www.sensoria-ist.eu

SDE Architecture

 The SDE Core is based on Java, OSGi, and Eclipse

 The inner core is based on OSGi only, enabling headless (server-side)

usage and orchestrations

 The outer core contains the SDE Core UI, and is based on Eclipse

 OSGI bundles may

wrap existing

software written in

Java or native

languages

 UI is usually based

on Eclipse (SWT),

but may also be

written in other GUI

frameworks

SENSUS 2009 - Philip Mayer 22

www.sensoria-ist.eu

OSGi + Eclipse

 As Eclipse is OSGi-based, each Plug-In is also an OSGi-Bundle. The

difference relates to which dependencies are declared

 Only OSGi-Dependencies: OSGi Layer

 Additionally, Eclipse dependencies: Eclipse Layer

 The SDE core consists of 10 OSGi bundles/Eclipse plugins

 4 for the core (OSGi-based)

 5 for the UI (based on Eclipse)

 1 with development helpers (based on Eclipse)

 A bundle may provide

 API (as usual in Java)

 Extension points (new feature of Equinox (OSGi) – defines, in XML, points

where other bundles can contribute code).

 We use both mechanisms in the SDE itself

SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Core Implementation

SENSUS 2009 - Philip Mayer 24

www.sensoria-ist.eu

Core API

 Interesting Core API functions (Java Interfaces):

 public Set<ITool> getTools();

 public ITool findToolById(String id);

 public void addTool(ITool tool);

 ...

 public void postToBoard(Object object);

 public Set<Object> retrieveFromBoardByType(Class<?> clazz);

 ...

 public void setToolOption(String toolId, String option,

 String value);

 ...

 public void addRemoteCore(String locationURI);

 ...

 These functions can be called from other plug-ins, or through the SDE UI

itself.

SENSUS 2009 - Philip Mayer 25

www.sensoria-ist.eu

Core Extension Points

 The most interesting extension point is for

registering tools

 On the right, the data structure is shown. A

tool needs to be added by specifying

 a unique ID,

 a human-readable name,

 the implementing class,

 a human-readable description,

 available functions with parameters,

 available options,

 its categories.

 The SDE core parses the extensions on

startup and adds all registered tools to the

discovery service.

SENSUS 2009 - Philip Mayer 26

www.sensoria-ist.eu

Annotations

 Instead of writing an extension for the SDE extension point by hand, the

metadata can be added to the tool class or interface with annotations.

 Example:

@SensoriaTool(name= "UML Problem Analysis Service",

categories= "Analysis", description= "...")

public class UMLProblemAnalyer {

@SensoriaToolFunction(description= "Function description")

@SensoriaToolFunctionReturns(description= "A string")

public String performSomeAnalysis(

 @SensoriaToolFunctionParameter(description= "...")

 UMLActivity activity);

 ...

 }

 The SDE Development Tool can then be used to generate the extension.

SENSUS 2009 - Philip Mayer 27

www.sensoria-ist.eu

Conclusion

www.sensoria-ist.eu

Conclusion

 The Sensoria project is working on methods and tools to support

developers in creating better service-oriented software

 Therefore, several tools (with formal background) have been developed

which users should be able to use in combination.

 The Sensoria Development (SDE) was created as a lightweight

integration platform into which all these tools can integrate

 It is based on a SOA principle itself and thus views tools as services,

which can be discovered, invoked, and composed.

 A graphical composition service is included for easy orchestration.

 Outlook

 In the lab session, we’ll create two SDE tools (and Eclipse plug-ins) from

scratch, and integrate them with other tools in the workflow.

SENSUS 2009 - Philip Mayer 29

www.sensoria-ist.eu

Thank You!

