
www.sensoria-ist.eu

The SENSORIA Development Environment

Goals, Benefits, Implementation and Usage

Philip Mayer

Programming and Software Engineering Research Group

Department of Informatics

LMU Munich

Germany

www.sensoria-ist.eu

Outline

 Sensoria break-down: Formal methods & tools

 From a tooling perspective: How Sensoria views SOA development

 Introducing the SDE

 SDE Aims

 SDE Design & Implementation

 Tools in the SDE

 Using the SDE

 SDE Internals

SENSUS 2009 - Philip Mayer 2

www.sensoria-ist.eu

About Sensoria

 Sensoria stands for Software Engineering for Service-Oriented

Overlay Computers

 Sensoria is an EU-sponsored research project spanning 3 universities, 2

research institutes and 4 companies from 7 European countries

The aim of Sensoria is the development of new

methodologies and tools for the development of

Service-Oriented Software Systems

SENSUS 2009 - Philip Mayer 3

www.sensoria-ist.eu

Sensoria Output

 Sensoria aims at providing researchers and practitioners with concepts

and tools for

 modeling,

 checking, analyzing, and verifying,

 transforming,

 and deploying

...service-oriented software systems

 Some of the results are highly theoretical, others result in tools (and

some in both).

 In this talk, I will focus on a tooling perspective on Sensoria, i.e. the

question

How can we support, through tools based on formal methods, the

development process of Service-Oriented Systems?

SENSUS 2009 - Philip Mayer 4

www.sensoria-ist.eu

Supported Steps in the Development Process

The Sensoria project provides solutions (tools) for each of these areas:

SENSUS 2009 - Philip Mayer 5

www.sensoria-ist.eu

Tools, Tools, Tools

 There are quite a few tools developed within Sensoria, over a dozen are

listed on the website

 Initially, they were developed independently and did not cooperate with

one another

 However, there are several scenarios in which developers might want to

use a combination of these tools

 For example:

a. Modelling in UML

b. Checking the model using a formal language

c. Transforming automatically in-between those two.

 Three tools for one task!

 The question was how to bring all these tools together

 The answer is a lightweight integrated development environment to

with the tools can be contributed.

 SENSUS 2009 - Philip Mayer 6

www.sensoria-ist.eu

Requirements for an integration tool

 An integration tool should

 ...for users: Enable them to use discover and use tools alone or in

combination, with the ability to write orchestrations of tools to use as a

new tool (idea of service orchestrations).

 ...for developers: Enable easy integration of a tool API, and

straightforward publishing of tools (idea of yellow pages)

 We address these requirements with the Sensoria Development

Environment (SDE)

 Benefits include

 A means of providing SENSORIA tools from a central location

 A homogeneous platform for using the SENSORIA tools

 Ability to compose tools and run tool chains automatically

SENSUS 2009 - Philip Mayer 7

www.sensoria-ist.eu

The Sensoria Development Environment

 The Sensoria Development Environment is a lightweight OSGi/Eclipse-

based integration platform for developing SOA-based software

 The SDE consists of the integration platform (SDE Core) and integrated

tools:

 Tools are registered with the SDE Core

 The core also handles the registry (finding tools) and tool automation

(through scripts or orchestrations)

8 SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Key Features of the SDE/SDE Core

 A SOA-based platform

 The SDE Core is based on a Service-Oriented Architecture itself

 The tools hosted in the SDE Core are registered and handled as services

 A service registry allows discovery of tools

 A Composition Infrastructure

 Composition, or orchestration, of services is a key concept of SOAs

 It allows composing existing services to form a new one

 The SDE Core enables this process for tools to automate commonly used

workflows

 A Focus On Usability

 Many Sensoria tools are based on formal methods and languages

 The idea is to expose as much functionality and as little low-level code as

possible

 The SDE architecture encourages use of automated model transformations to

translate between high-level models and formal specifications

SENSUS 2009 - Philip Mayer 9

www.sensoria-ist.eu

Tools in the SDE

 A tool, integrated into the SDE, is an entity with a name, a description,

etc, and a list of invokable functions (API)

 A function is the basic execution unit of a tool. It takes arbitrary

(developer-defined) parameters and may return an arbitrary object as

well.

 A function has attached metadata which describes the parameters and return

types in more detail.

 Furthermore, each tool may contain options which can be changed

through the framework.

 Once a user has retrieved a tool from the SDE registry, invocation of

functions is done directly.

 The SDE also contains a UI for talking directly to the tools (mainly for

debugging reasons).

SENSUS 2009 - Philip Mayer 10

www.sensoria-ist.eu

Advanced features

 A particularly useful feature of the SDE is tool composition, or

orchestration:

 All tools within the SDE provide a public interface

 This interface can be used from orchestration languages (text-based or

graphical) to create new tools combined from existing ones

 The SDE contains two default orchestration mechanisms

 A JavaScript-based textual script editor + execution environment

 A graphical (UML activity diagrams-like) orchestration editor with cross-

translation to Java for execution.

 Another feature of the SDE is remote invocation

 The SDE core is inherently distributed

 I.e., each installation contains a networking core which can be linked with

other through R-OSGI (Remote OSGi)

 This allows using tools installed on other machines, and transferring

data between them.

11 SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Using tools Tool Browser
Lists available tools,

ordered by category

Function Browser
Lists functionality

available in a tool

Orchestration
Defines data flow

between tool functions

Blackboard
Stores data in-between tool

function calls

Shell
Allows direct access to

tool functions

SENSUS 2009 - Philip Mayer 12

www.sensoria-ist.eu

The SDE and Eclipse

Basic functionality demo

www.sensoria-ist.eu

What can we do with the SDE?

 Back to this diagram:

 The SDE contains tools from several parts of the SOA development

process. Let’s have a look at what’s integrated:

SENSUS 2009 - Philip Mayer 14

www.sensoria-ist.eu

UML4SOA Profile
(Modelling)

 Aim is simple and easy specification of SOA artefacts in UML

 Focuses on behavioural aspects

 Statical aspects are re-used from soaML.

Modelling Tools

SENSUS 2009 - Philip Mayer 15 Philip Mayer 15

SRML
(Modelling)

 The Sensoria Reference Modelling Language is a high-level language

for modelling service-oriented systems, that includes a syntax and a

mathematical semantics

 SCA-like structure (components, external services, wires)

 declarative description of the business logic based on interactions

RML

www.sensoria-ist.eu

Transformation/Code Generation

VIATRA2 + UML2WSDL
(Transformation)

 VIATRA2 is a transformation language and framework

 Aim is simple and easy specification of model transformations

 MDD4SOA Transformers
(Transformation)

 MDD4SOA includes a set of transformers for converting UML4SOA

models

 Target languages are BPEL/WSDL, Java, and Jolie

SENSUS 2009 - Philip Mayer 16

www.sensoria-ist.eu

Analysis

LTSA/WS-Engineer
(Qualitative Analysis)

 perform model checking on UML diagrams or BPEL code

 Aim is detection of deadlocks or other qualitative properties

PEPA
(Quantitative Analysis)

 Perform runtime analysis on UML diagrams

 Aim is understanding of the distribution of time spent in the various parts

of the program

SENSUS 2009 - Philip Mayer 17

L

 T

 S

 A

PEPA

www.sensoria-ist.eu

More Analysis

LySaTool
(Analysis)

 Tool for verifying security properties of protocols that use cryptography

 Based on protocols modelled in LySa (a process calculus)

 Through program analysis, the LySaTool can guarantee confidentiality

and authentication properties.

CMC - UMC UCTL/Socl

model checkers
(Analysis)

 Model checker for systems defined by interacting UML statecharts.

 Allows to model-check on the fly abstract behavioral properties in the Socl

braching-time state-action based, parametric temporal logic

SENSUS 2009 - Philip Mayer 18

www.sensoria-ist.eu

Analysis / Runtime

MDD4SOA Analyser
(Analysis)

 verifies that an orchestration follows the defined protocol

 Aim is spotting protocol errors before deployment

DINO
(Runtime)

 Dino is a runtime discovery and binding service

 Aim is dynamic selection of services according to properties at runtime

SENSUS 2009 - Philip Mayer 19

DINO

www.sensoria-ist.eu

Using the SDE on a concrete case study

Performing checks in an eUniversity SOA

www.sensoria-ist.eu

How does the SDE work internally?

 Back to the initial ideas about the SDE:

 Questions we have not answered yet:

 How does the SDE core look like, exactly?

 How are tools integrated into the SDE?

 Read on...

SENSUS 2009 - Philip Mayer 21

www.sensoria-ist.eu

SDE Architecture

 The SDE Core is based on Java, OSGi, and Eclipse

 The inner core is based on OSGi only, enabling headless (server-side)

usage and orchestrations

 The outer core contains the SDE Core UI, and is based on Eclipse

 OSGI bundles may

wrap existing

software written in

Java or native

languages

 UI is usually based

on Eclipse (SWT),

but may also be

written in other GUI

frameworks

SENSUS 2009 - Philip Mayer 22

www.sensoria-ist.eu

OSGi + Eclipse

 As Eclipse is OSGi-based, each Plug-In is also an OSGi-Bundle. The

difference relates to which dependencies are declared

 Only OSGi-Dependencies: OSGi Layer

 Additionally, Eclipse dependencies: Eclipse Layer

 The SDE core consists of 10 OSGi bundles/Eclipse plugins

 4 for the core (OSGi-based)

 5 for the UI (based on Eclipse)

 1 with development helpers (based on Eclipse)

 A bundle may provide

 API (as usual in Java)

 Extension points (new feature of Equinox (OSGi) – defines, in XML, points

where other bundles can contribute code).

 We use both mechanisms in the SDE itself

SENSUS 2009 - Philip Mayer

www.sensoria-ist.eu

Core Implementation

SENSUS 2009 - Philip Mayer 24

www.sensoria-ist.eu

Core API

 Interesting Core API functions (Java Interfaces):

 public Set<ITool> getTools();

 public ITool findToolById(String id);

 public void addTool(ITool tool);

 ...

 public void postToBoard(Object object);

 public Set<Object> retrieveFromBoardByType(Class<?> clazz);

 ...

 public void setToolOption(String toolId, String option,

 String value);

 ...

 public void addRemoteCore(String locationURI);

 ...

 These functions can be called from other plug-ins, or through the SDE UI

itself.

SENSUS 2009 - Philip Mayer 25

www.sensoria-ist.eu

Core Extension Points

 The most interesting extension point is for

registering tools

 On the right, the data structure is shown. A

tool needs to be added by specifying

 a unique ID,

 a human-readable name,

 the implementing class,

 a human-readable description,

 available functions with parameters,

 available options,

 its categories.

 The SDE core parses the extensions on

startup and adds all registered tools to the

discovery service.

SENSUS 2009 - Philip Mayer 26

www.sensoria-ist.eu

Annotations

 Instead of writing an extension for the SDE extension point by hand, the

metadata can be added to the tool class or interface with annotations.

 Example:

@SensoriaTool(name= "UML Problem Analysis Service",

categories= "Analysis", description= "...")

public class UMLProblemAnalyer {

@SensoriaToolFunction(description= "Function description")

@SensoriaToolFunctionReturns(description= "A string")

public String performSomeAnalysis(

 @SensoriaToolFunctionParameter(description= "...")

 UMLActivity activity);

 ...

 }

 The SDE Development Tool can then be used to generate the extension.

SENSUS 2009 - Philip Mayer 27

www.sensoria-ist.eu

Conclusion

www.sensoria-ist.eu

Conclusion

 The Sensoria project is working on methods and tools to support

developers in creating better service-oriented software

 Therefore, several tools (with formal background) have been developed

which users should be able to use in combination.

 The Sensoria Development (SDE) was created as a lightweight

integration platform into which all these tools can integrate

 It is based on a SOA principle itself and thus views tools as services,

which can be discovered, invoked, and composed.

 A graphical composition service is included for easy orchestration.

 Outlook

 In the lab session, we’ll create two SDE tools (and Eclipse plug-ins) from

scratch, and integrate them with other tools in the workflow.

SENSUS 2009 - Philip Mayer 29

www.sensoria-ist.eu

Thank You!

